NOVA PUBLICAÇÃO
Acaba de ser publicado o artigo “Anamorphosis Reformed: From Optical Illusions to Immersive Perspectives” assinado pelo investigador António Araújo.
O Handbook of the Mathematics of the Arts and Sciences, acabado de publicar, inclui capítulos que mostram as origens, unificação e pontos de semelhança entre diferentes disciplinas e a matemática. António Araújo, que tem dedicado a sua investigação ao estudo das anamorfoses, publica neste âmbito um capítulo dedicado a anamorfoses imersivas.
Abstract
We discuss a definition of conical anamorphosis that sets it at the foundation of both classical and curvilinear perspectives. In this view, anamorphosis is an equivalence relation between three-dimensional objects, which includes two-dimensional representatives, not necessarily flat. Vanishing points are defined in a canonical way that is maximally symmetric, with exactly two vanishing points for every line. The definition of the vanishing set works at the level of anamorphosis, before perspective is defined, with no need for a projection surface. Finally, perspective is defined as a flat representation of the visual data in the anamorphosis. This schema applies to both linear and curvilinear perspectives and is naturally adapted to immersive perspectives, such as the spherical perspectives. Mathematically, the view here presented is that the sphere and not the projective plane is the natural manifold of visual data up to anamorphic equivalence. We consider how this notion of anamorphosis may help to dispel some long-standing philosophical misconceptions regarding the nature of perspective.
Mais informações aqui.